The Time-Rescaling Theorem and Its Application to Neural Spike Train Data Analysis
نویسندگان
چکیده
Measuring agreement between a statistical model and a spike train data series, that is, evaluating goodness of fit, is crucial for establishing the model's validity prior to using it to make inferences about a particular neural system. Assessing goodness-of-fit is a challenging problem for point process neural spike train models, especially for histogram-based models such as perstimulus time histograms (PSTH) and rate functions estimated by spike train smoothing. The time-rescaling theorem is a well-known result in probability theory, which states that any point process with an integrable conditional intensity function may be transformed into a Poisson process with unit rate. We describe how the theorem may be used to develop goodness-of-fit tests for both parametric and histogram-based point process models of neural spike trains. We apply these tests in two examples: a comparison of PSTH, inhomogeneous Poisson, and inhomogeneous Markov interval models of neural spike trains from the supplementary eye field of a macque monkey and a comparison of temporal and spatial smoothers, inhomogeneous Poisson, inhomogeneous gamma, and inhomogeneous inverse gaussian models of rat hippocampal place cell spiking activity. To help make the logic behind the time-rescaling theorem more accessible to researchers in neuroscience, we present a proof using only elementary probability theory arguments. We also show how the theorem may be used to simulate a general point process model of a spike train. Our paradigm makes it possible to compare parametric and histogram-based neural spike train models directly. These results suggest that the time-rescaling theorem can be a valuable tool for neural spike train data analysis.
منابع مشابه
Time-rescaling methods for the estimation and assessment of non-Poisson neural encoding models
Recent work on the statistical modeling of neural responses has focused on modulated renewal processes in which the spike rate is a function of the stimulus and recent spiking history. Typically, these models incorporate spike-history dependencies via either: (A) a conditionally-Poisson process with rate dependent on a linear projection of the spike train history (e.g., generalized linear model...
متن کاملApplying the Multivariate Time-Rescaling Theorem to Neural Population Models
Statistical models of neural activity are integral to modern neuroscience. Recently interest has grown in modeling the spiking activity of populations of simultaneously recorded neurons to study the effects of correlations and functional connectivity on neural information processing. However, any statistical model must be validated by an appropriate goodness-of-fit test. Kolmogorov-Smirnov test...
متن کاملApplying the multivariate time-rescaling theorem to neural population models Citation
Article is made available in accordance with the publisher's policy and may be subject to US copyright law. Please refer to the publisher's site for terms of use. The MIT Faculty has made this article openly available. Please share how this access benefits you. Your story matters. Statistical models of neural activity are integral to modern neuro-science. Recently interest has grown in modeling...
متن کاملDiscrete Time Rescaling Theorem: Determining Goodness of Fit for Discrete Time Statistical Models of Neural Spiking
One approach for understanding the encoding of information by spike trains is to fit statistical models and then test their goodness of fit. The time-rescaling theorem provides a goodness-of-fit test consistent with the point process nature of spike trains. The interspike intervals (ISIs) are rescaled (as a function of the model's spike probability) to be independent and exponentially distribut...
متن کاملConstruction and analysis of non-Poisson stimulus-response models of neural spiking activity.
A paradigm for constructing and analyzing non-Poisson stimulus-response models of neural spike train activity is presented. Inhomogeneous gamma (IG) and inverse Gaussian (IIG) probability models are constructed by generalizing the derivation of the inhomogeneous Poisson (IP) model from the exponential probability density. The resultant spike train models have Markov dependence. Quantile-quantil...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Neural computation
دوره 14 2 شماره
صفحات -
تاریخ انتشار 2002